Consistent Bayesian sparsity selection for high-dimensional Gaussian DAG models with multiplicative and beta-mixture priors

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Gaussian Mixture Models for High-Density Genotyping Arrays.

Affymetrix's SNP (single-nucleotide polymorphism) genotyping chips have increased the scope and decreased the cost of gene-mapping studies. Because each SNP is queried by multiple DNA probes, the chips present interesting challenges in genotype calling. Traditional clustering methods distinguish the three genotypes of an SNP fairly well given a large enough sample of unrelated individuals or a ...

متن کامل

High-Dimensional Clustering with Sparse Gaussian Mixture Models

We consider the problem of clustering high-dimensional data using Gaussian Mixture Models (GMMs) with unknown covariances. In this context, the ExpectationMaximization algorithm (EM), which is typically used to learn GMMs, fails to cluster the data accurately due to the large number of free parameters in the covariance matrices. We address this weakness by assuming that the mixture model consis...

متن کامل

Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...

متن کامل

Two-way Gaussian mixture models for high dimensional classification

Mixture discriminant analysis (MDA) has gained applications in a wide range of engineering and scientific fields. In this paper, under the paradigm of MDA, we propose a two-way Gaussian mixture model for classifying high dimensional data. This model regularizes the mixture component means by dividing variables into groups and then constraining the parameters for the variables in the same group ...

متن کامل

On Parameter Priors for Discrete DAG Models

We investigate parameter priors for discrete DAG models. It was shown in previous works that a Dirichlet prior on the parameters of a discrete DAG model is inevitable assuming global and local parameter independence for all possible complete DAG structures. A similar result for Gaussian DAG models hinted that the assumption of local independence may be redundant. Herein, we prove that the local...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2020

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2020.104628